
CSS Root and Variables

CSS variables (also called custom properties) allow you to define reusable values in your

stylesheet, making it easier to manage styles across a project. They’re particularly useful for

maintaining a consistent design system and improving maintainability.

1. What is the :root Selector?

The :root selector targets the highest level in the HTML document tree (i.e., the <html>

element). It’s commonly used to define global CSS variables that can be accessed anywhere

within the document.

:root {

 --primary-color: #3498db; /* Blue */

 --secondary-color: #2ecc71; /* Green */

 --font-size-base: 16px;

 --line-height-base: 1.5;

}

2. Using CSS Variables

Once you’ve defined variables in the :root, you can reference them throughout the rest of the

stylesheet using var().

body {

 font-size: var(--font-size-base);

 line-height: var(--line-height-base);

 color: var(--primary-color);

}

button {

 background-color: var(--secondary-color);

 color: white;

}

3. Advantages of CSS Variables

 Reusability: Variables allow you to reuse the same value in multiple places. If you need

to change a color or font size, you only need to update it in one place.

 Maintainability: Having consistent values across a project makes your code easier to

maintain, and updates are faster and less error-prone.

 Dynamic Updates: You can even change the values of CSS variables dynamically with

JavaScript.

JS
document.documentElement.style.setProperty('--primary-color', '#e74c3c'); //

Change primary color dynamically

Responsive Design

Responsive design ensures that your website looks good on all devices, from desktop monitors to

smartphones, by adapting to different screen sizes and orientations.

1. Media Queries

Media queries are used to apply different styles depending on the device’s characteristics, such

as screen width, height, orientation, resolution, etc. This allows you to create a responsive layout

that adjusts to different screen sizes.

/* Default styles for desktop */

body {

 font-size: 16px;

 margin: 20px;

}

h1 {

 font-size: 2rem;

}

/* Styles for tablets (screens wider than 600px but less than 1024px) */

@media (max-width: 1024px) {

 body {

 font-size: 14px;

 }

 h1 {

 font-size: 1.8rem;

 }

}

/* Styles for mobile devices (screens less than 600px wide) */

@media (max-width: 600px) {

 body {

 font-size: 12px;

 }

 h1 {

 font-size: 1.5rem;

 }

}

In the above example:

 Default styles are applied to larger screens (desktops).

 For screens between 600px and 1024px, styles are adjusted to suit tablet-sized devices.

 For screens below 600px, mobile-specific styles are applied.

2. Mobile-First Design

A popular approach in responsive design is mobile-first design. This means you start with styles

for smaller screens (mobile) and then add styles for larger screens using media queries.

/* Mobile-first styles (for screens less than 600px) */

body {

 font-size: 14px;

 margin: 10px;

}

h1 {

 font-size: 1.8rem;

}

/* Styles for tablets and larger devices */

@media (min-width: 600px) {

 body {

 font-size: 16px;

 }

 h1 {

 font-size: 2.2rem;

 }

}

@media (min-width: 1024px) {

 body {

 font-size: 18px;

 }

 h1 {

 font-size: 2.5rem;

 }

}

In this approach:

 You define the basic layout for mobile devices.

 As the screen size increases, additional styles are added through media queries.

3. Fluid Layouts with Percentages

Instead of using fixed units like pixels (px), use relative units like percentages (%) for widths and

heights. This allows elements to resize based on their parent containers.

.container {

 width: 100%; /* Full width of the parent */

 padding: 2%;

}

.header {

 width: 50%; /* Takes up half the container width */

}

4. Viewport Units

Viewport units (vw, vh, vmin, vmax) are relative to the size of the viewport (the visible area of the

browser window).

 1vw = 1% of the viewport's width

 1vh = 1% of the viewport's height

 vmin = 1% of the smaller dimension (width or height)

 vmax = 1% of the larger dimension (width or height)

Example:

h1 {

 font-size: 10vw; /* Font size will be 10% of the viewport's width */

}

section {

 height: 50vh; /* The section will have a height equal to 50% of the

viewport height */

}

5. Flexbox and Grid for Responsive Layouts

Both Flexbox and CSS Grid are powerful tools for creating responsive layouts without needing

complex media queries.

Flexbox:

.container {

 display: flex;

 flex-wrap: wrap;

}

.item {

 flex: 1 1 300px; /* Items will grow, shrink, and have a base width of 300px

*/

}

In this example, the items will automatically adjust their size based on the available space,

wrapping into new rows when necessary.

CSS Grid:

.container {

 display: grid;

 grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); /* Creates

columns that automatically adjust */

}

With CSS Grid, you can define the layout to automatically adjust depending on the screen size.

In this case, each grid item will have a minimum width of 300px and will grow to take up

remaining space.

Best Practices for Responsive Design

1. Mobile-First Approach: Always design for smaller screens first and gradually add more

complex styles for larger screens.

2. Flexible Layouts: Use percentage-based widths and Flexbox or Grid to create flexible

layouts that adapt to the screen size.

3. Images: Use responsive images () to serve different image sizes

based on the device's screen resolution.

4. Test Across Devices: Always test your website on different devices to ensure it looks

good on phones, tablets, and desktops.

Conclusion

 Root and Variables: Use CSS variables for global design consistency and easier

maintenance. Defining them in the :root selector makes them globally available

throughout your stylesheet.

 Responsive Design: Use media queries, fluid layouts, and flexible layout systems like

Flexbox and Grid to create a design that adapts to various screen sizes and devices.

With these techniques, you’ll be able to create websites that are not only functional but also

provide a great user experience on any device!

