
CSS Flexbox & Grid

1. CSS Flexbox (Flexible Box Layout)

Flexbox is a layout model in CSS designed to make it easier to align and distribute space among

items in a container, even when their size is unknown or dynamic. It works along a single axis

(either a row or a column) and is ideal for one-dimensional layouts.

Basic Concepts of Flexbox:

 Flex Container: The parent element that holds the flex items. It is set by applying display:
flex; or display: inline-flex; to an element.

 Flex Items: The child elements within the flex container.

Syntax to make an element a flex container:

.container {

 display: flex;

}

Key Flexbox Properties:

1. Container Properties:

o flex-direction: Defines the direction of the flex container's items (row or

column).
 row: Default, items are placed in a horizontal line (left to right).
 column: Items are placed vertically (top to bottom).
 row-reverse: Items are placed in a reverse horizontal direction.
 column-reverse: Items are placed in reverse vertical direction.

.container {

 display: flex;

 flex-direction: row;

}

o justify-content: Aligns items along the main axis (horizontal in a row, vertical in

a column).
 flex-start: Aligns items at the start of the container.
 center: Aligns items at the center of the container.
 flex-end: Aligns items at the end of the container.
 space-between: Distributes items with equal spacing between them.
 space-around: Distributes items with equal spacing around them.

.container {

 justify-content: center; /* Centers items along the main axis

*/

}

o align-items: Aligns items along the cross axis (vertical in a row, horizontal in a

column).
 stretch: Items stretch to fill the container (default).
 flex-start: Aligns items to the top of the container (for rows).
 flex-end: Aligns items to the bottom (for rows).
 center: Aligns items to the center.
 baseline: Aligns items based on their baseline (useful for text alignment).

.container {

 align-items: center; /* Vertically centers items in a row

layout */

}

o flex-wrap: Controls whether items should wrap onto the next line when there’s

not enough space.
 nowrap: Default, items will not wrap.
 wrap: Items will wrap onto multiple lines.
 wrap-reverse: Items will wrap in reverse order.

.container {

 flex-wrap: wrap; /* Allows items to wrap onto the next line */

}

2. Item Properties:

o flex: Defines how an item will grow and shrink relative to others within the

container.
 Syntax: flex: <flex-grow> <flex-shrink> <flex-basis>;
 flex-grow: Defines how much an item will grow relative to others (default is

0).
 flex-shrink: Defines how much an item will shrink relative to others (default

is 1).
 flex-basis: Defines the initial size of the item before it starts growing or

shrinking.

.item {

 flex: 1; /* All items will grow equally to fill the container

*/

}

o align-self: Allows individual flex items to override the align-items property and

align themselves differently along the cross axis.
 auto: Default, follows the container’s align-items.
 flex-start, flex-end, center, baseline, stretch: Same options as

align-items.

.item {

 align-self: center; /* Aligns this particular item to the

center */

}

Flexbox Example:
html

<div class="container">

 <div class="item">Item 1</div>

 <div class="item">Item 2</div>

 <div class="item">Item 3</div>

</div>

css

.container {

 display: flex;

 justify-content: space-between;

 align-items: center;

}

.item {

 width: 100px;

 height: 100px;

 background-color: lightblue;

 margin: 10px;

}

In this example, the items are evenly spaced across the container and centered vertically.

2. CSS Grid Layout

The CSS Grid Layout is a powerful two-dimensional layout system that enables precise control

over both rows and columns. It’s great for building complex, responsive web layouts.

 Grid Container: The parent element that holds the grid items. It is set by applying display:
grid; to an element.

 Grid Items: The child elements that make up the grid.

Syntax to make an element a grid container:

.container {

 display: grid;

}

Key Grid Properties:

1. Container Properties:

o grid-template-columns: Defines the columns of the grid.
 You can set specific widths for each column or use fr (fractional unit) to

distribute space equally.

.container {

 grid-template-columns: 1fr 1fr 1fr; /* Three equal-width

columns */

}

o grid-template-rows: Defines the rows of the grid.
 Similar to columns, you can set fixed heights or use fr units.

.container {

 grid-template-rows: 200px 100px; /* Two rows: first 200px

high, second 100px high */

}

o grid-gap (gap): Defines the space between grid items.

.container {

 grid-gap: 10px; /* 10px gap between grid items */

}

o grid-template-areas: Defines a grid template using named areas, making it easier

to visualize the layout.

.container {

 grid-template-areas:

 "header header header"

 "main sidebar sidebar"

 "footer footer footer";

}

2. Item Properties:

o grid-column: Specifies where an item should start and end in terms of columns.

.item {

 grid-column: 1 / 3; /* Item spans from column 1 to column 3 */

}

o grid-row: Specifies where an item should start and end in terms of rows.

.item {

 grid-row: 2 / 4; /* Item spans from row 2 to row 4 */

}

Grid Example:
html

<div class="container">

 <div class="item header">Header</div>

 <div class="item main">Main Content</div>

 <div class="item sidebar">Sidebar</div>

 <div class="item footer">Footer</div>

</div>

css

.container {

 display: grid;

 grid-template-columns: 2fr 1fr; /* Two columns: main content is twice as

wide */

 grid-template-rows: auto 1fr auto; /* Three rows: header, content, footer

*/

 grid-gap: 10px;

}

.header {

 grid-column: 1 / 3;

}

.main {

 grid-column: 1;

}

.sidebar {

 grid-column: 2;

}

.footer {

 grid-column: 1 / 3;

}

In this example, the grid has two columns (with the first column twice as wide), and three rows.

The header spans both columns, and the footer also spans both columns.

Summary of Key Concepts:

Flexbox:

 One-dimensional layout: Works in a row or column direction.
 Use properties like flex-direction, justify-content, align-items, and flex-wrap for

positioning and spacing items.
 Flexible items grow and shrink to fit the container.

CSS Grid:

 Two-dimensional layout: Works with both rows and columns.
 Use properties like grid-template-columns, grid-template-rows, grid-gap, and

grid-template-areas to control the layout.
 Items can span multiple rows and columns using grid-column and grid-row.

Both Flexbox and Grid are powerful layout tools, with Flexbox being best for simple, linear

layouts and Grid being more suitable for complex, two-dimensional layouts.

